[发明专利]一种基于强化学习的频繁写缓存数据压缩方法有效

专利信息
申请号: 202111252212.5 申请日: 2021-10-29
公开(公告)号: CN113946292B 公开(公告)日: 2023-10-24
发明(设计)人: 沈凡凡;徐超;陈勇 申请(专利权)人: 南京审计大学
主分类号: G06F3/06 分类号: G06F3/06
代理公司: 暂无信息 代理人: 暂无信息
地址: 211815 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于强化学习的频繁写缓存数据压缩方法,以此更好的解决非易失性缓存中数据压缩存储的问题。包括如下步骤:S1:对于每一次缓存写请求访问操作,将写强度和复用局部性信息记录在数据收集模块;S2:通过强化学习模式选择算法,选择适合压缩的模式,将选择的模式信息记录在预测表中;S3:根据预测表中缓存数据的压缩标志位,如果待写数据适合压缩,则将其压缩后存储在缓存中,下次读取该数据时,根据预测表中记录的压缩方法还原被压缩数据;S4:基于霍夫曼编码的数据压缩算法压缩待存储的数据;S5:如果有缓存访问操作,则返回至步骤S1,如果没有缓存访问操作,则缓存访问结束。本发明所提出的强化学习方法获取频繁写数据,以低功耗的形式压缩存储在非易失性缓存中,提升压缩效率和系统性能。
搜索关键词: 一种 基于 强化 学习 频繁 缓存 数据压缩 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京审计大学,未经南京审计大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202111252212.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top